

التحضير لمباريات ولوج المدارس العليا

ENSAM

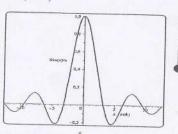
École nationale supérieure d'arts et métiers

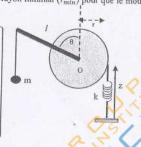
QR code facebook

groupe.des.instituts.excel.marrakech

www.excelweb.ma

WWW.groupeexcel.ma





Université Hassan II Casablanca			préparatoires de l'ENSAM Casablanca-Meknès TALES ET BRANCHES TECHNIQUES Durée : 2h00	Université Moulay Ismail
	Nom:		La fiche ne doit porter aucun signe indicatif ni signature	Um
AM ensam	Prénom :		L'épreuve contient 2 pages. Elle est composée de deux parties indépendantes : une partie rédaction et une partie QCM.	<u>A'A</u>
/	CNE:	Signature du candidat	L'usage de la calculatrice programmable est strictement interdit.	المحرسة الوطنية العنيا الفنوغ و المهن الإنجاب المرادة العنيا الفنوغ و المهن المدادة
Physique I (Mécanique) : Exercice 1:			QCM Physique I (Mécanique) : 1. Un point matériel es dévlocant donc le plan (p. 1)	

Un disque, pouvant tourner sans frottement autour d'un axe horizontal, est soumis à l'action d'un ressort de raideur k et celle d'une masse suspendue à l'extrémité d'une tige (sans masse, longueur : 1) solidaire passant par son axe. Un fil inextensible relie une extrémité du ressort et le point de la tige situé sur le pourtour du disque ; le fil ne glisse pas sur la poulie. On donne $J=\frac{1}{2}mr^2$ le moment d'inertie du disque par rapport à son axe de rotation. Lorsque le ressort est au repos, la tige est verticale ($\theta = 0$). Déterminer :

- 1.1. L'énergie potentielle du système.
- 1.2. L'énergie cinétique du système.
- 1.3. L'équation différentielle vérifiée par θ .
- 1.4. Les positions d'équilibres.
- 1.5. En utilisant le graphe ci-dessous et sachant que $\frac{kr^2}{mat} = 0.5$, déterminer numériquement les positions d'équilibres.
- 1.6. Pour les faibles valeurs de heta, Déterminer le rayon minimal (r_{min}) pour que le mouvement soit stable (Borné).

Exercice 2:

Une piste de ski a le profil représenté ci-dessous. La partie rectiligne (AB = 1) est incliné a un angle α par rapport à l'horizontale. La partie BC est une portion d'un cercle (0,r) talle que $\left(\overrightarrow{OC},\overrightarrow{OB}\right)=\theta_0$. On néglige les frottements et on assimile le skieur à un point matériel de masse mqui fait le départ au point A sans vitesse initiale. En fonction de θ_0 , σ_a , g, r et l, Déterminer

- 2.1. La réaction de la piste circulaire sur le skieur
- 2.2. La valeur θ_1 de θ , pour laquelle le skieur quitte la piste BC?

Fiche de réponse :

- 2.3. la relation entre θ_0 , α , r et l permettant au skieur de décoller au point B.
- 2.4. L'équation différentielle que satisfait l'angle θ .

par $\begin{cases} x = 2t \\ y = t^2 \end{cases}$. Le rayon de courbure de sa trajectoire est :

a. $R_c=2\sqrt{1+t^2}$ b. $R_c=2/\sqrt{1+t^2}$ c. $R_c=2(1+t^2)^{3/2}$ 2. Un disque (D) de centre C et de rayon R se met enmouvement dans la plan (xoy). Il est parfaitement attaché par

un ressort de raideur (k) et de masse négligeable.

Le moment d'inertie de (D) par rapport à son axe est $J = \frac{1}{2} mR^2$

On suppose que le contact au point I s'effectue avec frottement et sans glissement,

L'équation différentielle que satisfait l'abscisse du centre est :

a.
$$\ddot{x} + \frac{k}{m}x = 0$$
 b. $\ddot{x} + \frac{2k}{3m}x = 0$ c. $\ddot{x} + \frac{3k}{2m}x = 0$ d. $\ddot{x} + \frac{2k}{m}x = 0$

3. Un point matériel M de masse m est taché sans vitesse initiale d'une hauteur h. On suppose que les frottements sont negligeables. Le champ de pesanteur se met sous la forme suivante g(z)= g_0 R: rayon de la terre g(x) l'altitude du point M. La durée suffisante pour que M arrive au

$$(1+\frac{z}{R})$$
 b. $\sqrt{\frac{2h}{g_0}}$ c.

b.
$$\sqrt{\frac{2h}{g_0}}$$
 c. $\int_0^h \frac{(1+\frac{z}{R})dz}{\sqrt{2g_0.(h-z)}}$ d. $\int_0^h \frac{dz}{\sqrt{2g_0.(h-z)}}$

d. $R_c = 2(1+t^2)^{-3/2}$

4. La figure ci-dessous représente l'association de trois ressorts de raideurs k_1 , k_2 et k_3 . M est un

a.
$$(1+\frac{k}{R})\sqrt{\frac{k}{30}}$$
 b. $\sqrt{g_0}$ c. $\int_0^{\frac{K}{2}} \frac{dz}{\sqrt{2g_0(h-z)}}$ d. $\int_0^{\frac{k}{2}} \frac{dz}{\sqrt{2g_0(h-z)}}$ 4. La figure ci-dessous représente l'association de trois ressorts de raideurs k_1, k_2 et k_3 . M est un point matériel de masse m. La raideur du ressort équivalent est :

 k_1
 k_2
 k_3
 k_4
 k_4
 k_4
 k_4
 k_5
 k_5
 k_6
 k_7
 k_8
 k_8

5. Un neutron de masse m et animé d'une vitesse v_0 (E_{c0}) entre en collision frontale (choc direct) avec un noyau au repos de masse lpha m (lpha est un coefficient). Le choc est supposé parfaitement élastique (Conservation de l'énergie cinétique et de quantité de mouvement). En supposant qu'un neutron subit plusieurs chocs successifs dans les mêmes conditions. Au bout de n chocs, l'énergie cinétique du neutron est :

$$\text{a. } E_{cn} = \left[\frac{1+k}{1-k}\right]^{2n} E_{c0} \ \text{ b.} E_{cn} = n \frac{1-k}{1+k} E_{c0} \ \text{ c.} E_{cn} = \left[\frac{1-k}{1+k}\right]^n E_{c0} \ \text{ d.} E_{cn} = \left[\frac{1-k}{1+k}\right]^{2n} E$$

6. En mars 1979, la sonde Voyager 1 s'approchant de Jupiter à une altitude z mesure le champ gravitationnel G crée par cette planète. ($G_1 = G(z_1)$ et $G_2 = G(z_2)$). Le rayon de Jupiter est :

$$\text{a.}\quad \frac{z_2-z_1}{\frac{G_1}{G_2}-1}-z_1 \qquad \text{b.}\quad \frac{z_1-z_2}{\frac{G_2}{G_1}-1}-z_2 \qquad \text{c.}\quad \frac{z_2-z_1}{\sqrt{\frac{G_1}{G_2}-1}}-z_1 \qquad \text{d.}\quad \frac{z_1-z_2}{\sqrt{\frac{G_2}{G_1}-1}}-z_2$$

Fiche de répon	AND PROPERTY.		Phys	ique I (Mécani	que) : Une re	ponse juste : 2pts,	una ránona	o forman and and			
N° question		Réj	oonse	•	Note	N° question	, une repons				1
1.1	$E_P=$					1.6.	r _{min} =		Réponse		Note
1.2.	-					1.00	/ min-				
1.2.	$E_C =$					2.1.					
1.3.			-		-	2.2					
						2.2.	$\Theta_I =$				
1.4.						2.3.					-
1.5.	VIVII A										
1.5.						2.4.			1		
	s					2.4.					
TOTAL/20pts			OCM PI	ivsiaue I (Méca	enique) Una						
1.5. TOTAL/20pts Fiche de répons N° question		Répo	QCM PI	iysique I (Méca	nique) Une i	éponse juste : + 2	e, Pas de rép	onse : 0, Une rép	onse fausse ou plus	s d'une seule ré _j	ponse :-1
TOTAL/20pt: Fiche de répons N° question	se:				nique) Une i	éponse juste : + 2 N° question			oonse fausse ou plu. Réponse	s d'une seule réj	ponse :-1 Note
TOTAL/20pts Fiche de répons N° question 1.	se :	b. 🗅	QCM PI onse c. □	iysique I (Méca d. □	nique) Une i	éponse juste : + 2	P, Pas de rép	onse : 0, Une rép b. 🗆	oonse fausse ou plu. Réponse C. 🗆	s d'une seule réj d. 🛭	
TOTAL/20pts Fiche de répons N° question 1.	se:				nique) Une s	éponse juste : + 2 N° question			Réponse	d. 🛭	
TOTAL/20pt: Fiche de répons N° question	se :	b. 🗅	c. 🗆	<i>d</i> . □	nique) Une n	éponse juste : + 2 N° question 1.	a. 🗆	b. 🗆	Réponse c. □		

Concours d'entrée en 1ère année des années préparatoires de l'ENSAM Casablanca-Meknès

SERIES: SCIENCES EXPERIMENTALES ET BRANCHES TECHNIQUES

Epreuve de physique / 1 août 2016

Durée: 2h00

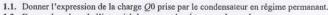
Université Moulay Ismail

SCH TROME ASSAULTE OWNS IT HERE

C1

La fiche ne doit porter aucun signe indicatif ni signature

L'épreuve contient 2 pages. Elle est composée de deux parties indépendantes : une partie rédaction et une partie QCM.


L'usage de la calculatrice programmable est strictement interdit.

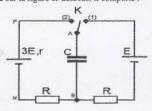
Physique II (Electricité) :

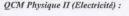
Exercice 1: On considère le montage électrique représenté sur la figure ci-dessous. il comporte :

- Un générateur de tension idéal de force électromotrice E.
- Un générateur de tension de force électromotrice 3E et de résistance interne r;
- Un condensateur C.
- Deux conducteurs ohmiques R₁= R₂= R.
- Un interrupteur K.

Dans un premier temps, on charge le condensateur sous une tension E (l'interrupteur K est en position (1)).

- 1.2. Donner la valeur de l'intensité du courant i qui traverse le condensateur.
- À l'instant t = 0 on bascule K en position (2).
- 1.3. Donner la valeur de l'intensité du courant i(0) qui traverse le condensateur.
- 1.4. Lorsque K est en position (2) depuis très longtemps, quelle est l'expression de la charge finale


La solution de l'équation différentielle à laquelle obéit q(t) est de la forme $q(t) = A + Be^{-\frac{t}{t}}$ où A, B et τ sont des constantes.


- 1.5. Exprimer A et B en fonction des données du problème.
- 1.6. Comment se nomme τ? Donner son expression.
- 1.7. Quelle est l'expression de l'intensité i (t) du courant ?

Exercice 2 : On considère le montage électrique représenté sur la figure ci-dessous.

Le condensateur est déchargé à l'instant t=0 où on ferme l'interrupteur K. la résistance du générateur de tension est négligeable.

- 2.1. Déterminer l'intensité du courant i1(t).
- 2.2. Déterminer l'intensité du courant i2(t).
- 2.3. Déterminer l'instant to où le courant i(t) débité par le générateur de la tension est maximum, et calculer la valeur i_{max} si L=0.5H, C=1 μ F, R1=1 Ω , R2=10⁶ Ω

1. On réalise le montage représenté sur la figure suivante :

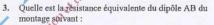
On bascule l'interrupteur en position 1 puis on le fait passer en position 2. Déterminer

1.1. la charge Q_I du condensateur C_I :

2,86 µC; b. 7,15μC; c. 10μC; d. 0.5mC;

1.2. l'énergie totale des deux condensateurs :

b. 10 μJ d. 54,3 μJ


2. Dans un circuit RLC parallèle l'équation différentielle vérifiée par i en fonction de :

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 et $\lambda = \frac{1}{2RC\omega_0}$ est donnée par : $\frac{d^2i}{dt^2} + 2\lambda\omega_0\frac{di}{dt} + \omega_0^2i = 0$. Déterminer :

2.1. l'impédance équivalente du dipôle AB pour $\omega = \omega_0$;

b. $1/\sqrt{LC}$;

2.2. la valeur de R pour avoir le régime critique (régime qui correspond au retour le plus rapide de i vers zéro sans oscillations) sachant que i(t=0)=i₀≠0 et u(t=0)=0. c. $2\sqrt{\frac{L}{c}}$;

b. 3R

Un voltmètre se comporte comme :

- a. Un fil (résistance 0Ω)
- b. Un interrupteur ouvert (résistance infinie)

c. une résistance de faible valeur

d. une résistance de forte valeur (> $1M\Omega$)

Physique II (Electricité) : Une réponse juste : 2pts, une rép <mark>onse fausse</mark>	ou pas de réponse : 0
N° question	Réponse	Note

N° questio	on	Réponse N		N° question		Réponse	Note
1.1.	$Q_0 =$			1.6.		$\dot{\tau} =$	
1.2.	$i(\infty) =$			1.7.	i(t) =		
1.3.	i(0) =			2.1.	$i_1(t) =$		
1.4.	$q(\infty) =$			2.2.	$i_2(t) =$		
1.5.	A =	B =		2.3	$t_0 =$	i_{max}	20
TOTAL (20)						

TOTAL/20pts

OCM Physique II (Flectricité) Une rénonse juste : + 2 Pas de rénonse : 0. Une rénonse fausse ou plus d'une seule rénonse :-

Nº question	on Réponse Not				Note	N° question	n Réponse				
1.1.	a. 🗆	b. 🗆	c. 🗆	• d. □		2.2.	a. 🗆	b. 🗆	c. 🗆	d. □	
1.2.	a. 🗆	b. 🗆	c. 🗆	d. 🗆		3.	a. 🗆	<i>b</i> . П	c. 🗆	d. 🗆	
2.1.	a. 🗆	b. 🗆	c. 🗆	d. 🗆		4.	a. 🗆	<i>b</i> . 🗆	c. 🗆	d. 🗆	

TOTAL/12pts

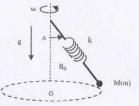
TOTAL de l'épreuve de physique /64pts

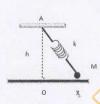
Université Hassan II Casablanca	Concour		préparatoires de l'ENSAM Casablanca-Meknès	Université Moulay Ismai
UZ	Epreuve de phys	SERIES : SCIENCES sique / 1 août 2016	S MATHEMATIQUE A/B Durée : 2h00	1 Illumos
HILL	Nom:		La fiche ne doit porter aucun signe indicatif ni signature	
A\(\lambda\) ensam	Prénom :		 L'épreuve contient 2 pages. Elle est composée de quatre parties indépendantes: deux parties rédaction et deux parties QCM. 	<u>'</u> _
1, 1	CNE:	Signature du candidat	L'usage de la calculatrice programmable est strictement interdit.	تَارِي عَهُ تَوَوَّتُمَ الْخَيَّا لِلْانِيُّ وَ الْمُهُو

	製物	HINE	DA.
1		H	A.
CHERRY	ment if	题	間

Physique I (Mécanique) :

On se propose d'étudier deux possibilités du mouvement d'une masselotte de masse m coulissant sans frottement sur une tige. La masselotte est attachée au point fixe A par un ressort de raideur k et de longueur à vide lo.


Partie 1:


L'extrémité fixe A est située à une distance h de la tige horizontale (Ox). On désigne par x l'abscisse de M par rapport à O la projection de A. En fonction k, x, l_0 et h, déterminer :

- 1.1. L'expression de la force de rappel.
- 1.2. L'expression de l'énergie potentielle sachant que $E_p(x=0)=0$.
- 1.3. Les positions d'équilibres.
- 1.4. Les pulsations des petites oscillations autour des positions d'équilibres stables.

La tige fait un angle de θ_0 par rapport à (OA) et tourne uniformément (ω) autour de cet axe.

- 1.5. Déterminer l'équation différentielle de M le long de la tige.
- 1.6. Déterminer la position d'équilibre et la période d'oscillation.
- 1.7. Déterminer la vitesse angulaire maximale (ω_{max}) de la tige pour que le mouvement de la masselotte soit stable (Borné).

Exercice 2:


 $(x = b[\theta + \sin(\theta)]$

Un point matériel M peut glisser sans frottement dans un plan vertical (xoy) sur un support d'équation (Γ):

b est une constante et θ est un paramètre entre 0 et 2π . Détermipe $y = b[1 - \cos(\theta)]$

- 2.1. L'abscisse curviligne S = arc(OM) en fonction de b et
- 2.2. L'énergie potentielle en fonction de S.
- 2.3. L'équation différentielle vérifiée par S

ainsi que la période d'oscillation du point M

QCM Physique I (Mécanique) :

Un point matériel se déplaçant dans le plan (xoy) est repéré

par $\begin{cases} x = 2t \\ y = t^2 \end{cases}$. Le rayon de courbure de sa trajectoire est :

a. $R_c=2\sqrt{1+t^2}$ b. $R_c=2/\sqrt{1+t^2}$ c. $R_c=2(1+t^2)^{3/2}$ 2. Un disque (D) de centre C et de rayon R se met enmouvement d. $R_c = 2(1+t^2)^{-3/2}$

dans la plan (xoy). Il est parfaitement attaché par

un ressort de raideur (k) et de masse négligeable.

Le moment d'inertie de (D) par rapport à son axe est $J = \frac{1}{5} mR^2$

On suppose que le contact au point 1 s'effectue avec frottement et sans glissement

L'équation différentielle que satisfait l'abscisse du centre est :

a.
$$\ddot{x} + \frac{k}{m}x = 0$$
 b. $\ddot{x} + \frac{2k}{3m}x = 0$ c. $\ddot{x} + \frac{3k}{2m}x = 0$ d. $\ddot{x} + \frac{2k}{m}x = 0$

3. Un point matériel M de masse m'est lâché sans vitesse initiale d'une hauteur h. On suppose que les frottements sont négligeables. Le champ de pesanteur se met sous la forme suivante g(z) =

 $g_0 \frac{R^2}{(R+z)^2}$. Re rayon de la terre et z l'altitude du point M. La durée suffisante pour que M arrive au sol est

a.
$$(1 + \frac{z}{R}) \sqrt{\frac{2h}{g_0}}$$
 b. $\sqrt{\frac{2h}{g_0}}$ c. $\int_0^h \frac{(1 + \frac{z}{R})dz}{\sqrt{2g_0(h - z)}}$ d. $\int_0^h \frac{dz}{\sqrt{2g_0(h - z)}}$

4. La figure ci-dessous représente l'association de trois ressorts de raideurs k_1, k_2 et k_3 . M est un point matériel de masse m. La raideur du ressort équivalent est :

$$k_{2}+k_{2}+k_{3} \qquad \text{b. } k_{1}+\frac{k_{2}k_{3}}{k_{2}+k_{3}} \qquad \text{c. } k_{2}+\frac{k_{1}k_{3}}{k_{1}+k_{3}} \qquad \text{d. } k_{3}+\frac{k_{2}k_{1}}{k_{2}+k_{1}}$$

§. Un neutron de masse m et animé d'une vitesse v_0 (E_{c0}) entre en collision frontale (choc direct) avec un noyau au repos de masse αm (α est un coefficient). Le choc est supposé parfaitement élastique (Conservation de l'énergie cinétique et de quantité de mouvement). En supposant qu'un neutron subit plusieurs chocs successifs dans les mêmes conditions. Au bout de n chocs, l'énergie cinétique du neutron est :

a.
$$E_{cn} = \left[\frac{1+k}{1-k}\right]^{2n} E_{c0}$$
 b. $E_{cn} = n \frac{1-k}{1+k} E_{c0}$ c. $E_{cn} = \left[\frac{1-k}{1+k}\right]^n E_{c0}$ d. $E_{cn} = \left[\frac{1-k}{1+k}\right]^{2n} E_{c0}$

6. En mars 1979, la sonde Voyager 1 s'approchant de Jupiter à une altitude z mesure le champ gravitationnel G crée par cette planète. ($G_1 = G(z_1)$ et $G_2 = G(z_2)$). Le rayon de Jupiter est :

$$\text{a.}\quad \frac{z_2-z_1}{\frac{G_2}{G_2}-1}-z_1 \qquad \text{b.}\quad \frac{z_1-z_2}{\frac{G_2}{G_1}-1}-z_2 \qquad \text{c.}\quad \frac{z_2-z_1}{\sqrt{\frac{G_2}{G_2}-1}}-z_1 \qquad \text{d.}\quad \frac{z_1-z_2}{\sqrt{\frac{G_2}{G_1}-1}}-z_2$$

se: Physique I	(Mécanique)	: Une réponse jus	ste : 2pts, une réponse fausse ou pas de réponse : 0	
Réponse	Note	N° questio Réponse		Note
$\vec{T} =$		1.6.		
$E_p(x)=$		1.7.		
		2.1.	S=	
		2.2.	$E_P(s)=$	
		2.3.		
	$ec{T}=% egin{array}{cccccccccccccccccccccccccccccccccccc$	$\vec{T}=$ Note	RéponseNoteN° question n \vec{T} =1.6. $E_p(x)$ =1.7.2.1.2.2.	RéponseNoteN° questio nRéponse \vec{T} =1.6.1.7. $E_p(x)$ =2.1. S =2.2. $E_p(s)$ =

TOTAL/20pts

Fiche de répor	nse:		QC	M Physique I	(Mécaniq	ue) Une réponse ju	ıste : + 2, Pa	s de réponse : 0,	e ou plus d'une seule ré	réponse :-1	
Nº question		Ré	ponse		Note	Nº question			Réponse		Note
<i>I</i> .	a. 🗆	b. 🗆	с. 🗆	d, □		4.	a. 🗆	b. 🗆	<i>c.</i> □	d. 🗆	
2.	a. 🗆	<i>b</i> . □	с. 🗆	<i>d.</i> □		5.	а. 🗆	<i>b</i> . □	<i>c</i> . □	d. 🗆	
3.	a. 🗆	<i>b</i> . □	c. 🗆	d. □		6.	а. 🗆	<i>b</i> . □	<i>c</i> . □	<i>d</i> . □	

Université Hassan II

Concours d'entrée en 1ère année des années préparatoires de l'ENSAM Casablanca-Meknès

SERIES: SCIENCES MATHEMATIQUE A/B

Epreuve de physique / 1 août 2016

Durée: 2h00

Université Moulay Ismai

✓ La fiche ne doit porter aucun signe indicatif ni signature

√ L'épreuve contient 2 pages. Elle est composée de quatre parties indépendantes : deux parties rédoction et deux parties QCM.

C2

√ L'usage de la calculatrice programmable est strictement interdit.

C1

Tinv

C2

2.5uf

Physique II (Electricité)

 $\underline{\textit{Exercice 1}}: On considère le montage électrique représenté sur la figure ci-dessous, il comporte :$

- Un générateur de tension continue E
- Deux condensateurs C1=C2=C
- Deux conducteurs ohmiques R1= R2= R.
- Trois interrupteurs K1, K2 et K3.

N.B.

✓ Dans toutes les parties on note t=0 le temps où les interrupteurs hasculent vers leurs positions respectives.

- √ i_{c1}(1) le courant dans le condensateur C₁
 √ q₁(1) la charge de C₁ et q₂(1) la charge de C₂

Partie A: K1, K2 et K3 sont en positions (1).

- À l'instant t=0 le condensateur C₁ possède la charge q₀ et le condensateur C₂ est déchargé.
- 1.1. Déterminer l'équation différentielle à laquelle obéit q₁(t) en fonction de q₀, R et C.
- 1.2. En déduire la loi d'évolution ici(t).
- 1.3. Calculer l'intensité du courant ici en régime permanant.
- 1.4. Déterminer l'expression de w l'énergie calorifique dissipée dans le circuit en fonction de qu et C

Partie B: K_1 en position (1), K2 et K_3 sont en positions (2). À l'instant t=0 le condensateur C_1 possède la charge q_0 et le condensateur C_2 est déchargé. On

$$2\alpha = \frac{R_1C_1 + R_2(C_1 + C_2)}{R_1R_2C_1C_2} = \frac{3}{RC} \ et \ \beta^2 = \alpha^2 - \frac{1}{R_1R_2C_1C_2} = \alpha^2 - \frac{1}{(RC)^2}$$

1.5. En déduire la loi d'évolution $q_2(t)$ en fonction de $\alpha,\beta,\,q_0\,$ et le produit R.C .

Partie C: K1 et K3 sont en positions (2), K2 en position (3).

À l'instant t=0 les deux condensateurs sont déchargés.

- 1.6. Calculer l'intensité du courant i débité par le générateur en régime permanant.
- 1.7. Déterminer l'équation différentielle à laquelle obéit q1(t) en fonction de E, R et C.
- 1.8. En déduire la loi d'évolution q1(t).

Exercice 2 : On considère le montage électrique représenté sur la figure ci-dessous.

Le condensateur est déchargé à l'instant t=0 où on ferme

l'interrupteur K. la résistance du générateur de tension est négligeable. Déterminer :

2.1. l'équation différentielle en i2(t).

2.2. la loi d'évolution du courant $i_2(t)$ dans la résistance R. pour les valeurs L=1H, C=10 μ F, r=100 Ω , R=1000 Ω et E=200V.

2.3. Le courant minimal (i2)min

2.4. Ia tension maximale U_{max} aux bornes du condensateur

1. On réalise le montage représenté sur la figure suivante

On bascule l'interrupteur en position I puis on le fait passer en position 2. Déterminer :

1.1. la charge Q_I du condensateur C_I :

OCM Physique II (Electricité) :

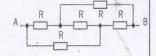
 a. 2,86 μC; b. 7,15μC; c. 10μC; d. 0.5mC:

1.2. l'énergie totale des deux condensateurs :

 $14.3 \,\mu J$ b. 10 μJ c. 50 μJ. d. 54,3 μJ

2. Dans un circuit RLC parallèle l'équation différentielle vérifiée par i en fonction de :

 $\omega_0 = \frac{1}{\sqrt{LC}}$ et $\lambda = \frac{1}{2RC\omega_n}$ est donnée par : $\frac{d^2i}{dt^2} + 2\lambda\omega_0 \frac{di}{dt} + \omega_0^2i = 0$.



2.1. l'impédance équivalente du dipôle AB pour $\omega = \omega_0$: b. 1/√LC ; c. 0; d. 00:

2.2. la valeur de R pour avoir le régime critique (régime qui correspond au retour le plus rapide de i vers zéro sans oscinations) sachant que i(t=0)=i₀≠0 et u(t=0)=0.

Quelle est la résistance équivalente du dipôle AB du montage suivant :

b. 3Rtione

4. Un volumetre se comporte comme :

a. On fil (résistance 0Ω)

c. une résistance de faible valeur

Un interrupteur ouvert (résistance infinie)

d. une résistance de forte valeur (> $IM\Omega$)

Physique II (Electricité): Une réponse juste : 2pts, une réponse fausse ou p

N° question	Réponse	Note	N° question	Réponse	Note
1.1.			1.7.	F-	
1.2	$i_{C1}(t) =$		1.8.	$q_1(t) =$	
1.3.	$i_{C1}(\infty) =$		2.1.		
1.4.	w =		2.2.	$i_2(t) =$	
1.5.	$q_2(t) =$		2.3.	$i_{2min} =$	
1.6.	$i(\infty) =$		2.4.	$U_{max} =$	

TOTAL/24pts

N° question		Ré	ponse		Note	N° question Réponse					Note
1,1,	a. 🗆	b. 🗆	c. 🗆	d. 🗆		2.2.	a. 🗆	b. 🗆	c. 🗆	d. 🗆	
1.2.	a. 🗆	<i>b</i> . П	c. 🗆	d. 🗆		3,	a. 🗆	b. 🗆	c. 🗆	d. 🗆	
2.1.	a. 🗆	b. 🗆	c. 🗆	d. 🗆		4.	a. 🗆	b. 🗆	c. 🗆	d. 🗆	

TOTAL/12pts

TOTAL de l'épreuve de physique /68pts