

MINISTÈRE DE L'EQUIPEMENT, DU TRANSPORT, DE LA LOGISITIQUE ET DE L'EAU

2018

INSTITUT SUPERIEUR D'ETUDES MARITIMES

Concours d'accès en 1^{ère} année du cycle normal (2018/2019) Epreuve de Maths, durée 1h.

Questionnaire à choix multiple. Pour chaque question, une seule réponse est exacte. Barème : réponse correcte : 2 points. réponse fausse : -1 point.pas de réponse : 0 points.

Exercice I

- 1) Calculer la limite suivante $\lim_{x \to +\infty} \frac{\ln(1+x)}{1+\sqrt{x}}$ A. 1 B.0 C. 2 D. $+\infty$ 2) La solution de l'équation $(\ln x)^4 10(\ln x)^2 + 9 = 0$ dans \mathbb{R} est : A $\{e^{-3}, e^{-1}, e, e^3\}$ B. $\{e^{-3}, e^{-1}, e, e^2\}$ C. $\{e^{-1}, e, e^2, e^3\}$ D. $\{e^{-2}, e^{-1}, e, e^2\}$
- 3) La solution de $x + 2 > \sqrt[3]{x^2 + 8}$ dans \mathbb{R} est : A]0, $+\infty$ [B.] $-\infty$, 0] C.[1, $+\infty$ [D.[2, $+\infty$ [

Exercice II

- 4) Soit g la fonction définie sur \mathbb{R} par : $g(x) = x^3 12x 16$. On admet que g est strictement croissante sur l'intervalle [3; 5]. On a : A. g est croissante sur [-2; 2] B. $\lim_{x\to -\infty} g(x) = +\infty$ C. Pour tout $x\in \mathbb{R}$, g'(x) = 4(x-2)(x+2) (D) l'équation g(x) = 0 admet une unique solution dans l'intervalle [3; 5]
- 5) Soit f la fonction définie sur]2; $+\infty$ [par : $f(x) = \frac{x^3 + 2x^2}{x^2 4}$ et C_f sa courbe représentative dans un repère orthogonal. On admet que, pour tout x > 2, $f'(x) = \frac{xg(x)}{(x^2-4)^2}$. Alors :
 - A. La droite d'équation x=1 est asymptote à C_f B. $\lim_{x\to 2^+} f(x) = -\infty$ D. f est croissante sur $]2; +\infty[$

Exercice III

On considère les deux suites numériques (u_n) et (v_n) définies par

$$\begin{cases} u_0 = \frac{1}{2} \\ u_{n+1} = \frac{9u_n}{4u_n + 3}, n \in \mathbb{N} \end{cases} \text{ et } v_n = 2 - \frac{3}{u_n}, n \in \mathbb{N}$$

Ble est exacte? A.
$$(v_n)$$
 est une suite géométrique de raison $\frac{1}{6}$ et de premier terme -4 .

B. $u_n = \frac{3}{1+4\left(\frac{1}{3}\right)^n}$, $\forall n \in \mathbb{N}$ C. $v_n + v_1 + \dots + v_n = \frac{1}{4}\left(1 - \left(\frac{1}{3}\right)^n\right)$ D. (v_n) est strictement décroissante

Quelle est la limite de la suite numérique (u_n) définie par $u_n = \frac{3^n - 2^n}{3^n + 2^n}$, $\forall n \in \mathbb{N}$ (A) 1 B. 0 C. 2 D. $\sqrt{\frac{2}{5}}$

Exercice IV

8) Une urne contient 10 boules indiscernables au toucher: 7 sont blanches et 3 sont noires. On tire simultanément 3 boules de l'urne. La probabilité de tirer 2 boules blanches et 1 boule noire est égale à :

[A]
$$\frac{21}{40}$$
 B. $\frac{7}{10} \times \frac{6}{9} \times \frac{1}{3}$ C. $\frac{7}{10} \times \frac{7}{10} \times \frac{1}{3}$ D. $\frac{7}{10} \times \frac{1}{3}$

D.
$$\frac{7}{10} \times \frac{1}{3}$$

9) De la même urne, on tire une boule, on note sa couleur, on la remet dans l'urne ; on procède ainsi à 5 tirages successifs avec remise. La probabilité d'avoir obtenu 3 boules noires et 2 boules blanches est

A.
$$\frac{3^3 \times 7^2}{10^5}$$
 B. $10 \times \left(\frac{3}{10}\right)^2 \times \left(\frac{7}{10}\right)^3$ C. $10 \times \left(\frac{3}{10}\right)^3 \times \left(\frac{7}{10}\right)^2$ D. $10 \times \left(\frac{3}{10}\right)^2 \times \left(\frac{7}{10}\right)^2$

10) De la même urne, on tire une seule boule. Si elle est blanche, on lance un dé cubique (dont les faces sont numérotées de 1 à 6). Si la boule est noire, on lance un dé tétraédrique (dont les faces sont numérotées de 1 à 4). On suppose les dés bien équilibrés. Le joueur gagne s'il obtient le numéro 1. Sachant que le joueur a gagné, la probabilité qu'il ait tiré une boule blanche est égale à :

A.
$$\frac{7}{60}$$

B.
$$\frac{14}{23}$$

C.
$$\frac{12}{40}$$

D.
$$\frac{21}{40}$$